f1(nil) -> nil
f1(.2(nil, y)) -> .2(nil, f1(y))
f1(.2(.2(x, y), z)) -> f1(.2(x, .2(y, z)))
g1(nil) -> nil
g1(.2(x, nil)) -> .2(g1(x), nil)
g1(.2(x, .2(y, z))) -> g1(.2(.2(x, y), z))
↳ QTRS
↳ DependencyPairsProof
f1(nil) -> nil
f1(.2(nil, y)) -> .2(nil, f1(y))
f1(.2(.2(x, y), z)) -> f1(.2(x, .2(y, z)))
g1(nil) -> nil
g1(.2(x, nil)) -> .2(g1(x), nil)
g1(.2(x, .2(y, z))) -> g1(.2(.2(x, y), z))
F1(.2(nil, y)) -> F1(y)
F1(.2(.2(x, y), z)) -> F1(.2(x, .2(y, z)))
G1(.2(x, .2(y, z))) -> G1(.2(.2(x, y), z))
G1(.2(x, nil)) -> G1(x)
f1(nil) -> nil
f1(.2(nil, y)) -> .2(nil, f1(y))
f1(.2(.2(x, y), z)) -> f1(.2(x, .2(y, z)))
g1(nil) -> nil
g1(.2(x, nil)) -> .2(g1(x), nil)
g1(.2(x, .2(y, z))) -> g1(.2(.2(x, y), z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
F1(.2(nil, y)) -> F1(y)
F1(.2(.2(x, y), z)) -> F1(.2(x, .2(y, z)))
G1(.2(x, .2(y, z))) -> G1(.2(.2(x, y), z))
G1(.2(x, nil)) -> G1(x)
f1(nil) -> nil
f1(.2(nil, y)) -> .2(nil, f1(y))
f1(.2(.2(x, y), z)) -> f1(.2(x, .2(y, z)))
g1(nil) -> nil
g1(.2(x, nil)) -> .2(g1(x), nil)
g1(.2(x, .2(y, z))) -> g1(.2(.2(x, y), z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
G1(.2(x, .2(y, z))) -> G1(.2(.2(x, y), z))
G1(.2(x, nil)) -> G1(x)
f1(nil) -> nil
f1(.2(nil, y)) -> .2(nil, f1(y))
f1(.2(.2(x, y), z)) -> f1(.2(x, .2(y, z)))
g1(nil) -> nil
g1(.2(x, nil)) -> .2(g1(x), nil)
g1(.2(x, .2(y, z))) -> g1(.2(.2(x, y), z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
G1(.2(x, nil)) -> G1(x)
Used ordering: Polynomial interpretation [21]:
G1(.2(x, .2(y, z))) -> G1(.2(.2(x, y), z))
POL(.2(x1, x2)) = 1 + x1 + x2
POL(G1(x1)) = x1
POL(nil) = 0
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
G1(.2(x, .2(y, z))) -> G1(.2(.2(x, y), z))
f1(nil) -> nil
f1(.2(nil, y)) -> .2(nil, f1(y))
f1(.2(.2(x, y), z)) -> f1(.2(x, .2(y, z)))
g1(nil) -> nil
g1(.2(x, nil)) -> .2(g1(x), nil)
g1(.2(x, .2(y, z))) -> g1(.2(.2(x, y), z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
G1(.2(x, .2(y, z))) -> G1(.2(.2(x, y), z))
POL(.2(x1, x2)) = 1 + x2
POL(G1(x1)) = x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
f1(nil) -> nil
f1(.2(nil, y)) -> .2(nil, f1(y))
f1(.2(.2(x, y), z)) -> f1(.2(x, .2(y, z)))
g1(nil) -> nil
g1(.2(x, nil)) -> .2(g1(x), nil)
g1(.2(x, .2(y, z))) -> g1(.2(.2(x, y), z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
F1(.2(nil, y)) -> F1(y)
F1(.2(.2(x, y), z)) -> F1(.2(x, .2(y, z)))
f1(nil) -> nil
f1(.2(nil, y)) -> .2(nil, f1(y))
f1(.2(.2(x, y), z)) -> f1(.2(x, .2(y, z)))
g1(nil) -> nil
g1(.2(x, nil)) -> .2(g1(x), nil)
g1(.2(x, .2(y, z))) -> g1(.2(.2(x, y), z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F1(.2(nil, y)) -> F1(y)
Used ordering: Polynomial interpretation [21]:
F1(.2(.2(x, y), z)) -> F1(.2(x, .2(y, z)))
POL(.2(x1, x2)) = 1 + x1 + x2
POL(F1(x1)) = x1
POL(nil) = 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
F1(.2(.2(x, y), z)) -> F1(.2(x, .2(y, z)))
f1(nil) -> nil
f1(.2(nil, y)) -> .2(nil, f1(y))
f1(.2(.2(x, y), z)) -> f1(.2(x, .2(y, z)))
g1(nil) -> nil
g1(.2(x, nil)) -> .2(g1(x), nil)
g1(.2(x, .2(y, z))) -> g1(.2(.2(x, y), z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F1(.2(.2(x, y), z)) -> F1(.2(x, .2(y, z)))
POL(.2(x1, x2)) = 1 + x1
POL(F1(x1)) = x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
f1(nil) -> nil
f1(.2(nil, y)) -> .2(nil, f1(y))
f1(.2(.2(x, y), z)) -> f1(.2(x, .2(y, z)))
g1(nil) -> nil
g1(.2(x, nil)) -> .2(g1(x), nil)
g1(.2(x, .2(y, z))) -> g1(.2(.2(x, y), z))